目录
一、帧差法
1、概念
2、为什么帧差法可以检测运动的物体?
二、使用OpenCV配合帧差法实现车辆识别
1、加载视频
2、灰度处理+帧差计算
3、二值化
4、腐蚀
5、膨胀
6、框选出车辆
三、全部代码+实现效果
1、代码
2、车辆检测效果
四、帧差法存在不足之处
帧差法是一种通过对视频图像序列中 相邻两帧作差分运算 来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。
当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像 亮度差的绝对值 ,判断它是否大于 阈值 来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。
😎还记得小时候的葫芦娃动画吗?每个人物其实都是一张剪纸,也被叫做“剪纸动画”,剪一张就是一帧,假设葫芦娃动画为每秒25帧,1秒内连续播放25张不同的剪纸。
😎因为每一帧之间是有差异的,所以我们可以看到剪纸 动 起来了。
博主有以下同一条鲨鱼的不同形态的png图片,使用图片查看来切换显示每一张图片
👀可以看到鲨鱼动起来了!!!
😎因此可以通过判断 前后两帧是否相同 ,来判断是否有运动的物体,即通过帧差法来检测运动的物体。
😁所以下面跟着博主来学习使用OpenCV通过帧差法来进行移动车辆的识别。当然不止可以识别车辆,其他移动的物体也可以识别。
🔎Qt 5.8.0 + OpenCV
因为彩色图片是3通道(RGB)24位深度的图像,而灰度图是单通道8位深度的图像,因此处理灰度图比彩色图效率快多了。
通过下图可以发现检测是检测出来了,但是画面非常的暗淡(不清晰),因此需要通过二值化来让图像更清晰点。
参数一为原图,参数二为处理后的图,直接将处理后的图覆盖掉原图即可
可以发现图像确实是变“清晰”了,因为二值化后的图像只有黑白两种颜色。并且我们还可以发现白色噪点非常多,因为摄像机抖动,风吹树叶等原因,因此还需要通过腐蚀来去除掉这些白色噪点。
腐蚀是针对图片的二值化数据进行操作的,主要是针对高亮部分。使用算法,将图像的边缘腐蚀掉。作用就是将目标的边缘的“毛刺”踢除掉。
如下图所示:
😧白色噪点确实是被去除了,但是我们的车辆也被腐蚀的不成车样(内部坑坑洼洼的),所以还需要通过膨胀将车辆进行进一步处理。
膨胀是针对图片的二值化数据进行操作的,主要是针对高亮部分。使用算法,将图像的边缘扩大些。作用就是将目标的边缘或者是内部的坑填掉。
如下图所示:
我们的车辆变成一个个大方块了,做到这一步差不多就可以来标记运动的车辆了,只要画矩形将白色大方块框起来即可。
框选的原理就是找到白色方块最左边的点与最右边的点,得到之间的大小差距(矩形宽),找到白色方块最上边的点与最下边的点,得到之间的大小差距(矩形高)。
通过宽高即可画出一个把白色方块包含在内的矩形,矩形左上角坐标通过白色方块最上方的值和最左方的值来确定。
帧差法虽然能够检测出运动的车辆,但是不仅包括车辆,任何运动的物体都会检测出来,就像上图所示,一旦相机抖动或者突然起大风,运动的物体就多了起来(两帧差异的地方很多),因此就会出现上面那种情况。
😘The end ……🔚
原创不易,转载请标明出处。
对您有帮助的话可以一键三连,会持续更新的(嘻嘻)。
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:xinmeigg88@163.com
本文链接:http://www.dbeile.cn/news/2136.html